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Abstract
The 100 m thick stratigraphic section exposed at Dinosaur Provincial Park (DPP; southern Alberta) contains bentonites that

have been used for more than 30 years to date DPP’s rocks and fossils using the K–Ar decay scheme. Limited reproducibility
among different vintages of K–Ar and 40Ar/39Ar ages inhibited the development of a high-resolution chronostratigraphy. Here,
we employ and further test a recently completed U–Pb geochronology and associated age-stratigraphy model to update tem-
poral constraints on the Park’s bentonites, formational contacts, and other markers. In turn, we document rock accumulation
rates and calibrate ages and durations of informal megaherbivore dinosaur assemblage zones and other biozones. Weighted
mean 206 Pb/238 U ages from five bentonites range from 76.718 ± 0.020 to 74.289 ± 0.014 Ma (2σ internal uncertainties) through
an interval of 88.75 m, indicating a duration of ∼2.43 Myr and an overall rock accumulation rate of 3.65 ± 0.04 cm/ka. An in-
crease in rate above the Oldman–Dinosaur Park formational contact conforms to a regionally expressed pattern of increased
accommodation at ∼76.3 Ma across Alberta and Montana. Palynological biozone data suggest a condensed section/hiatus in the
uppermost portion of the Oldman Formation. Dinosaur assemblage zones exhibit durations of ∼700–600 kyr and are signifi-
cantly shorter than those in the overlying Horseshoe Canyon Formation. A decreased rate in dinosaur assemblage turnovers
in the last eight million years of the Mesozoic in western Canada may be explained by withdrawal of the Western Interior
Seaway and the expansion of ecologically homogenous lowlands in its wake.

Key words: dinosaurs, geochronology, Dinosaur Provincial Park, stratigraphy, Campanian, Alberta

Introduction
Dinosaur Provincial Park (DPP; the Park), a small geo-

graphic area (80 km2) in southern Alberta, Canada (Fig. 1),
yields a rich and uniquely diverse assemblage of Late Campa-
nian vertebrates, including non-avian dinosaurs. The Park is
famous for abundant articulated and associated fossil skele-
tons and bonebeds that contribute to our understanding of
peak dinosaur diversity during the Late Campanian and pat-
terns of latitudinal variation in dinosaurian megaherbivore
taxa across the Western Interior Basin (WIB) of North Amer-
ica (Lehman 1997, 2001; Currie and Koppelhus 2005, and pa-
pers therein; Barrett et al. 2009; Sampson et al. 2010; Gates
et al. 2012; Eberth 2015; Ramezani et al. 2022; Roberts et al.
2005, 2013).

Starting in the middle of the 1980s, and continuing episod-
ically for ∼25 years, attempts were made to date DPP’s ben-
tonites employing standard and high-precision potassium–

argon-system techniques during a time of technological in-
novation and improvement (Thomas et al. 1990; Eberth
and Deino 1992, 2005; Eberth et al. 1992, 2013b; Eberth
2005). Although the original K–Ar and 40Ar/39Ar radiomet-
ric ages published in the 1990s allowed researchers to ap-
proximate the ages of the Park’s formational boundaries
and fossil occurrences (Thomas et al. 1990; Eberth and Ham-
blin 1993; Eberth 2005, 2017; Ryan and Evans 2005; Mallon
et al. 2012; Eberth et al. 2013a), there were serious limita-
tions to the reproducibility of those age data. These were
in part due to limited accuracy of mineral standard ages
and K decay constants used in 40Ar/39Ar geochronology,
as well as incompatibility of laboratory analytical proto-
cols (see summary in Ramezani et al. 2022). In turn, these
limitations inhibited the development of a single compre-
hensive chronostratigraphy for the Park’s strata and fos-
sils.
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Fig. 1. Localities of dated bentonites at Dinosaur Provincial Park. (A) Location of Dinosaur Provincial Park in southern Alberta.
(B) Map of Dinosaur Provincial Park (shading) and its boundary relative to the Red Deer River. Red dots indicate bentonite
sampling locations. Universal Transverse Mercator grid and other outlines from 1:50 000 scale topographic maps produced by
the Department of Energy, Mines, and Resources, Government of Canada (NAD83). (C) Google-Earth-Pro (version 7.3.6.9345)
satellite image of Dinosaur Provincial Park. Location of measured section (Fig. 2) in yellow. Bentonite localities in red. Imagery
date 10 October 2022; © 2023 Maxar Technologies; © 2023 CNES/Airbus. Abbreviations: b, base; BB, Bearpaw Bentonite; FSB,
Field Station Bentonite; JCB, Jackson Coulee Bentonite; LCZB, Lethbridge Coal Zone Bentonite; mE, meters east; mN, meters
north; N, north; PT, Plateau Tuff; t, top.
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The chemical-abrasion–isotope-dilution–thermal-
ionization-mass-spectrometry (CA-ID-TIMS) method of U–Pb
zircon geochronology has significantly improved the pre-
cision and accuracy of radioisotopic dating applied to the
stratigraphic record (e.g., Bowring et al. 2006) and is now
regarded as one of the most reliable means with which to
build high-resolution and, most importantly, reproducible
geochronologies for Mesozoic nonmarine strata (e.g., Cúneo
et al. 2013; Ramezani et al. 2014, 2022; Clyde et al. 2016;
Gastaldo et al. 2018; Eberth and Kamo 2019, 2020; Zhang
et al. 2021; Beveridge et al. 2022). Ramezani et al. (2022)
recently published results of their coordinated CA-ID-TIMS
U–Pb geochronology project involving Campanian-age di-
nosaur sites in the WIB of North America, including five
bentonites at DPP. Precise and reproducible ages for multiple
bentonites at DPP now allow us to revise and calibrate the
ages of the Park’s formational contacts, rates of rock ac-
cumulation, and biostratigraphic zonations. Demonstrated
interlaboratory reproducibility of the new geochronology
enables future researchers to refine the chronostratigraphy
of the Park’s dinosaur-rich section through additional U–
Pb CA-ID-TIMS geochronology and to correlate the section
meaningfully with other dinosaur-rich strata beyond the
limits of the Park.

Geologic and paleontologic context
DPP is dominated by exposures of the upper Belly River

Group (BRG), an eastward-thinning, nonmarine-to-paralic
clastic wedge that interfingers with marine shales of the
Western Interior Seaway (WIS). It was deposited in the dis-
tal foredeep of the WIB during the middle to late Cam-
panian (Eberth and Hamblin 1993; Jerzykiewicz and Norris
1994; Hamblin and Abrahamson 1996; Hamblin 1997; Eberth
2005; Eberth and Kamo 2020) and accumulated in response
to a complex history of tectonic uplift and erosion related
to the long-term docking and suturing of accretionary ter-
ranes along the western margin of Canada (Cant and Stock-
mal 1989; Eberth and Hamblin 1993; Price 1994; Hamblin
1997).

The BRG section (outcrop and subsurface) at the Park is
approximately 280 m thick and, in ascending order, consists
of the Foremost (∼160 m), Oldman (∼40 m), and Dinosaur
Park (∼80 m) formations (Eberth 2005; Ramezani et al. 2022;
Fig. 2). It interfingers with and is overlain by Bearpaw For-
mation (BFm) marine shales. Eberth (2005) provided the
most recent review of the formational stratigraphy and
sedimentology at DPP. The paralic to nonmarine Foremost
Formation (FFm) occurs in the subsurface at the Park and
can only be examined by geophysical well logs and core. It
consists of sandstones, mudstones, coals, and shales with
local iron-rich concretions. The Oldman Formation (OFm)
is a strictly alluvial unit but is partially exposed; only its
uppermost 10–20 m is well exposed throughout the Park.
It consists of poorly sorted sandstones and mudstones with
local iron- and silica-rich concretions. The Dinosaur Park For-
mation (DPFm) is an alluvial, estuarine, paralic, and marine
unit that is completely and well exposed throughout the
Park (∼80 m). It consists of sandstones, mudstones, shales,

carbonaceous shales, and coals with local iron-rich concre-
tions. The lowest ∼25 m of the BFm is exposed at the Park
and consists of laminated mudstone with localized ironstone
and phosphatic concretions that variously contain fossils of
ammonites and other marine-to-brackish invertebrates and
vertebrates.

DPP is uniquely famous for its rich diversity and abun-
dance of dinosaurs and other vertebrates (Eberth et al. 2001;
Ryan and Russell 2001; Currie 2005; Eberth and Currie 2005;
Henderson and Tanke 2010; Eberth and Evans 2011; Brown et
al. 2013a, 2013b; Eberth 2017). More than 300 skulls and artic-
ulated, partial-to-complete skeletons of dinosaurs have been
collected at DPP since 1912. More than 166 species of verte-
brates are known from DPP, including at least 51 species of
dinosaur (Eberth and Evans 2011; Brown et al. 2013a, 2013b;
Eberth 2017). In a global context, DPP’s dinosaur assemblage
represents a significant percentage (∼7%) of known global di-
nosaur diversity for the entirety of the Mesozoic based on
counts by Wang and Dodson (2006) and Benton (2008). The
DPFm yields the vast majority of vertebrate fossils at the Park
and, of those, approximately 80% are from the lower one-half
(40 m) of the formation (Eberth and Currie 2005; Henderson
and Tanke 2010; Eberth and Evans 2011; Brown et al. 2013a;
Eberth 2017).

DPP’s bentonites
Discrete beds of bentonite claystone are common in Up-

per Cretaceous strata of the WIB and throughout the strati-
graphic section at DPP. Thomas et al. (1990) and Eberth et
al. (1992) documented 15 discrete bentonite beds in the Old-
man, Dinosaur Park, and Bearpaw formations at DPP, and
since then a few additional bentonites have been noted. WIB
bentonites represent diagenetically altered air-fall deposits
of pyroclastic ash and tephra and have been commonly sam-
pled for radioisotopic dating of their magmatic minerals (e.g.,
Goodwin and Deino 1989; Thomas et al. 1990; Obradovich
1993; Rogers et al. 1993; Lerbekmo 2002; Roberts et al. 2005;
Foreman et al. 2008; Jinnah et al. 2009; Ramezani et al. 2022).

In outcrop, DPP’s bentonites are easily recognized by their
well-developed popcorn-textured surfaces——the result of clay
expansion and shrinkage due to weathering. The Park’s ben-
tonites rarely can be traced for more than a few hundred me-
ters in outcrop due to a combination of the natural limits
of the alluvial/paralic facies that hosted the airfall deposits
and a highly dissected/eroded modern badlands topography.
Bentonite thicknesses range from a few mm up to ∼50 cm,
and trenched exposures commonly reveal sharp upper and
lower boundaries. Boundaries can also be diffuse or soft-
sediment deformed, suggestive of deposition across a biotur-
bated (e.g., dinosaur-trampled) landscape or as the result of
post-depositional bio- and phytoturbation. The claystone ma-
trix is typically grey green but becomes a lighter color when
dry (N9) and a darker color when moist or wet (5G 5/2, 5Y
6/4, 5Y 7/4). Whole rock samples typically yield silt-to-sand-
sized volcanic phenocrysts (e.g., biotite, quartz, feldspar, and
zircon) and organic fragments that exhibit normal grading
through the deposit and are very often concentrated at or
near the base of the deposit (e.g., Thomas et al. 1990). At some
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Fig. 2. Belly River Group stratigraphy at Dinosaur Provincial Park based on outcrop and subsurface data as described by Eberth
(2005). Magnetostratigraphy from Lerbekmo (2005). Gamma log is from the Princess Well (Alberta Research Council Core Hole
83-1). Composite outcrop section (right) was measured in the Iddesleigh area by DAE (23–24 July 1996; see Fig. 1). With the
exception of BB and LCZB, which were observed in the measured section, bentonite placements are inferred using a variety
of marker beds and surfaces shown here. Inset explains symbols and abbreviations used in the measured section. Bentonite
abbreviations as in Fig. 1 and explained in the text. API, American Petroleum Institute units; BB, Bearpaw Bentonite; DPP,
Dinosaur Provincial Park; Fe-stone, ironstone; Fm, Formation; FSB, Field Station Bentonite; JCB, Jackson Coulee Bentonite;
LCZB, Lethbridge Coal Zone Bentonite; Lithostrat, Lithostratigraphy; Paleomag, Magnetostratigraphy; PT, Plateau Tuff.
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locations, phenocryst assemblages may comprise more than
one normally graded succession, suggesting multiple pulses
of airfall deposition and/or reworking (Thomas et al. 1990).
Diagenetically precipitated gypsum crystals, limonite stain-
ing, coalified root traces, and plant fragments are common
in these deposits (cf., Thomas et al. 1990), indicating a wide
range of post-depositional physical and organic influences on
the original airfall ash deposit over hours to years (Thomas et
al. 1990; Eberth et al. 1992).

X-Ray diffraction analyses of the Plateau Tuff (PT)——the
best-studied bentonite at DPP——indicate that the clay matrix
is monomineralic, comprising pure smectite (Thomas et al.
1990). Similar results were reported by Rogers (1990), Rogers
et al. (1993), and Foreman et al. (2008) for Campanian-age
bentonites from the Two Medicine Formation of Montana.
Based on the ubiquity of modern swelling behaviors, we
assume a largely smectitic clay composition for all the
bentonites discussed here. Thomas et al. (1990) showed
the PT to be the result of devitrification of volcanic ash
that was deposited as air-fall across a wetland landscape.
Using x-ray fluorescence and electron microprobe analy-
ses, they inferred that the tuff may have originated in the
Elkhorn Mountain Volcanic complex of Montana. How-
ever, Foreman et al. (2008) have also shown that the Adel
Mountain volcanics are a reasonable source for some of the
younger and more mafic bentonites in the Two Medicine
Formation, and thus, possibly, those in southern Alberta
as well.

In ascending stratigraphic order, the five bentonites from
DPP sampled and analyzed by Ramezani et al. (2022) and that
are our focus are Field Station Bentonite (FSB), Jackson Coulee
Bentonite (JCB), PT, Lethbridge Coal Zone Bentonite (LCZB),
and Bearpaw Bentonite (BB). Each is briefly described below.
The use of the term “Plateau Tuff” (instead of Plateau Ben-
tonite) honors the widespread use of the term in the litera-
ture and is further validated by the presence of volcanic glass
shards and “ghosted” pumiceous rock fragments in the ma-
trix (Thomas et al. 1990).

Although each bentonite occurs in a different geographic
location in the Park (Fig. 1) and cannot be traced continu-
ously beyond a few hundred meters, their relative lithostrati-
graphic positions can be documented by reference to forma-
tional boundaries and other stratigraphic markers (Roberts
et al. 2022). The stratigraphic section in which each ben-
tonite is placed (Fig. 2) was measured in the Iddesleigh area of
eastern-most DPP by DAE (23–24 July 1996). This area exposes
the most complete, continuous, and accessible outcrop sec-
tion in the Park. It includes all the formational boundaries
and marker beds that are present elsewhere throughout
the Park and encompasses the complete stratigraphic range
of the bentonites described here and by Ramezani et al.
(2022).

Field Station Bentonite
The FSB is 20 cm thick, occurs 5.5 m below the OFm–DPFm

contact, and crops out in the area around the Royal Tyrrell
Museum Field Station at DPP. Its placement in the Iddesleigh
section (Fig. 2) is based on its stratigraphic occurrence rel-

ative to the OFm–DPFm contact near the Field Station
building.

Jackson Coulee Bentonite
The JCB is a 50 cm thick, gritty bentonite dominated by

silt-sized volcanic grains, pumice fragments, and a variety of
as yet unidentified lithic fragments. It occurs 1.25 m above
the OFm–DPFm contact and forms the lowest portion of a
2 m thick, deeply weathered bentonitic mudstone succession.
It exhibits traces of laminae suggesting hydraulic reworking
and differential settling, multiple eruptive pulses, or both. Its
placement in the Iddesleigh section (Fig. 2) was determined
by its occurrence relative to the OFm–DPFm contact at the
mouth of Jackson Coulee, about 3 km southwest of the Id-
desleigh section.

Plateau Tuff
The PT is 30 cm thick and occurs 36 m above the OFm–

DPFm contact near the top of a stratigraphic succession ex-
posed in the natural preserve (core) area of the Park (Thomas
et al. 1990). It crops out locally along a prominent cliff-
forming ridge referred to locally as the “Cathedral” (Wood
1989; Thomas et al. 1990). The PT is the most intensively stud-
ied bentonite in the Park and is interpreted as representing
two or more short-duration accumulation events in an allu-
vial paludal/lacustrine (wetlands) setting (Thomas et al. 1990;
Eberth et al. 1992). Its placement in the Iddesleigh section
(Fig. 2) is based on its stratigraphic position relative to a car-
bonaceous shale marker bed (Figs. 2–4) that was traced in out-
crop from the PT locality to the Iddesleigh area, a distance of
∼7 km. The shale is likely a precursor to sub-bituminous coals
in the overlying Lethbridge Coal Zone and provides a reliable
means of lithostratigraphic correlation in this area (Eberth
2005).

Lethbridge Coal Zone Bentonite
The LCZB is 13 cm thick and occurs within the lowest

few meters of the Lethbridge Coal Zone, an approximately
15–20 m thick, organic-rich paralic zone at the top of the
DPFm (Eberth and Hamblin 1993; Eberth 2005; Fig. 2) in
the northeastern corner of the Park area, across the Red
Deer River and ∼7 km northeast from the Iddesleigh sec-
tion. There, it is hosted by an organic-rich mudstone suc-
cession that exhibits coalified roots and root traces. A
correlative of the LCZB was recognized in the Iddesleigh
section and was confirmed by comparing its position rel-
ative to the DPFm–BFm contact at both the LCZB local-
ity and in the Iddesleigh section. In our measured sec-
tion at Iddesleigh, the bentonite is placed 61.5 m above
the OFm–DPFm contact and 17.25 m below the DPFm–BFm
contact.

Bearpaw Bentonite
The BB is 30 cm thick, is hosted by drab-colored grey-brown

marine shales, and occurs 4.5 m above the base of the BFm in
the Iddesleigh section. In that area, the top of the DPFm is
marked by a 2.5–3.5 m thick deposit of oxidized (red–brown
tan) carbonaceous siltstone and shale that serves as a marker
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Fig. 3. CA-ID-TIMS U–Pb geochronology of five bentonites at Dinosaur Provincial Park and the associated Bayesian age-
stratigraphic model for the Park based on data from Ramezani et al. (2022). See the text for detailed discussion. Dashed curved
lines define the 95% confidence interval error envelope of the model. Inset bar-plot shows an additional CA-ID-TIMS U–Pb
zircon geochronology for the Plateau Tuff conducted by SLK at the Jack Satterly Geochronology Laboratory. Abbreviations as
in Fig. 1. Additional abbreviations: BFm, Bearpaw Formation; BGC, Berkeley Geochronology Center; cm, centimeters; DPFm,
Dinosaur Park Formation; JSGL, Jack Satterly Geochronology Laboratory; ka, kiloannum; Leth Coal Z, Lethbridge coal zone; Ma,
Megaannum; m, meters; MSWD, mean square weighted deviation; n, number of grains analyzed; OFm, Oldman Formation.

bed at the top of the nonmarine section and produces a
nonmarine palynological assemblage (Fig. 2; Brinkman et al.
2005, fig. 26.1; Eberth 2005).

Brief history of radioisotopic
geochronology at DPP

Prior to the recent U–Pb geochronology (Ramezani et
al. 2022), three bentonites from DPP——the PT, BB, and the
FSB——were dated using K–Ar and 40Ar/39Ar methods applied
to hand-picked biotite, plagioclase, and sanidine phenocrysts
(Thomas et al. 1990; Eberth and Deino 1992, 2005; Eberth
et al. 1992; Eberth and Hamblin 1993; Eberth 2005), along
with a number of other tuffs from correlative units across
the WIB (compiled in Ramezani et al. 2022). From DPP,
only results for the PT and BB were published with associ-
ated analytical data in peer-reviewed format (Thomas et al.
1990; Eberth et al. 1992; Fig. 3). Subsequently, Eberth and
Hamblin (1993), Eberth and Deino (1992, 2005), and Eberth
(2005) updated 40Ar/39Ar geochronology for bentonites from

the Milk River Canyon area of southeastern-most Alberta.
These formed the basis of a proposed age-stratigraphic
model for the BRG in southern Alberta (Eberth and Ham-
blin 1993, fig. 19; Eberth 2005). However, these reports
reflected geochronological work in progress without the
necessary analytical details and thus remained prelimi-
nary. Subsequent attempts at 40Ar/39Ar geochronology of
the BRG using the PT as a control produced inconsistent
results due to technical matters (see below), preventing
the preliminary ages from being finalized and properly
reported.

As summarized by Ramezani et al. (2022), the legacy
40Ar/39Ar geochronology of the WIB during the late 1980s
to the early 2000s reflected ongoing improvements in labo-
ratory protocols and age-calculation parameters, including
multiple revisions to the K decay constants and ages of min-
eral standards (e.g., Deino and Potts 1990; Renne et al. 1994,
1998, 2010, 2011; Min et al. 2001; Kuiper et al. 2008; Deino
et al. 2010; Phillips and Matchan 2013). Predictably, the re-
sulting inconsistencies combined with an overall piecemeal
approach frustrated attempts to build a comprehensive,
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Fig. 4. Radioisotopically calibrated litho- and biostratigraphy at Dinosaur Provincial Park (DPP) based on data presented here
and our CA-ID-TIMS U–Pb age model for DPP (Table 3; Ramezani et al. 2022). Vertical axis is millions of years. Dotted lines
indicating age boundaries between ammonite biozones are placed following Ogg and Hinnov (2012) and Gale et al. (2020).
Palynomorph biozones from Braman (2013, 2018). Dinosaur assemblage zones from Eberth and Getty (2005), Ryan and Evans
(2005), Evans (2007), Evans et al. (2009), Mallon et al. (2012) and Brown (2014). All abbreviations as in Figs. 2 and 3.

high-resolution, reproducible geochronology for the Park
and the BRG, as well as correlation to other Campanian-
age dinosaur sites with 40Ar/39Ar ages in the WIB (e.g.,
Goodwin and Deino 1989; Rogers et al. 1993; Ogg et al. 2004;
Roberts et al. 2005, 2013; Foreman et al. 2008; Jinnah et al.
2009).

A road map for systematic U–Pb zircon geochronology of
bentonites from Campanian-age dinosaur localities of the
Western Interior, envisioned by the late Sam Bowring at the
Massachusetts Institute of Technology (MIT) and Eric Roberts
at James Cook University, took shape by 2012. The approach
was unique in that its goals were to collect key bentonites
from target units in New Mexico, Utah, Montana, and Alberta
and to produce a set of internally consistent U–Pb age data
employing the latest community-wide analytical practices
and protocols for the CA-ID-TIMS method. It would thereby
create a basin-wide, high-resolution, chronostratigraphic
framework (baseline) upon which meaningful biostrati-
graphic correlations and dinosaur paleobiological interpreta-
tions could be based. The outcomes of the decade-long effort
now serve as a foundational geochronological study of Cam-
panian dinosaurs in the WIB (Ramezani et al. 2022). The study

reported ages from the five DPP bentonites described above,
which together supersede all previously published ages for
the DPP section. In ascending order, the ages (with 2σ analyti-
cal errors) are FSB, 76.718 ± 0.020 Ma; JCB, 76.354 ± 0.057 Ma;
PT, 75.639 ± 0.025 Ma; LCZB, 75.017 ± 0.020 Ma; and BB,
74.289 ± 0.014 Ma (Table 1).

A comparable effort in establishing a U–Pb CA-ID-TIMS
geochronology for the Campanian–Maastrichtian age Horse-
shoe Canyon Formation (HCFm) of south-central Alberta at
the Jack Satterly Geochronology Laboratory (JSGL) of the Uni-
versity of Toronto (Eberth and Kamo 2020) provided an in-
dependent age for the BB (74.308 ± 0.031 Ma) that serves as
a test point for interlaboratory comparison and accuracy as-
surance (see Ramezani et al. 2022). A second test reported
here is a CA-ID-TIMS U–Pb zircon age for a duplicate sam-
ple of the PT analyzed at JSGL in 2019. The consistency of
the two bentonite ages reported by MIT and JSGL provides
a quantitative test of reproducibility of the CA-ID-TIMS U–
Pb method as applied to the BRG. Figure 3 illustrates the U–
Pb-based age-stratigraphic (Bayesian) model for the DPP, in-
cluding the previously published 40Ar/39Ar results from the
PT (Thomas et al. 1990; Eberth et al. 1992), without any re-
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Table 1. U–Pb isotopic data for zircon from the Plateau Tuff, Dinosaur Provincial Park, Alberta (Jack Satterly Geochronology Laboratory, University of Toronto).

Sample
fractions∗

Ratios Ages (Ma)

Pbc
†(pg) Pb‡∗ /Pbc

†
U† (pg) Th/U§ 206Pb/204Pb|| 208Pb/206Pb¶ 206Pb/238U# Err(2σ%) 207Pb/235U# Err(2σ%) 207Pb/206Pb# Err(2σ%) 206Pb/238U Err(2σ ) 207Pb Err 207Pb Err Corr.

Plateau Tuff

Z1 1.5 21.6 2772 0.43 1388.5 0.138 0.011814 0.094 0.07617 1.42 0.04678 1.40 75.714 0.071 74.54 1.02 37 34 0.142

Z2 2.1 12.2 2139 0.50 774.4 0.158 0.011813 0.074 0.07757 0.93 0.04765 0.96 75.705 0.056 75.86 0.70 81 23 0.065

Z3 1.9 9.9 1557 0.44 643.3 0.140 0.011808 0.078 0.07773 0.96 0.04776 0.69 75.676 0.059 76.01 0.50 86 16 0.010

Z4 0.6 20.5 999 0.52 1279.0 0.164 0.011803 0.066 0.07742 0.49 0.04759 0.48 75.642 0.050 75.71 0.36 78 11 0.136

Z5 1.6 8.2 1099 0.46 533.7 0.146 0.011800 0.196 0.07736 1.73 0.04757 1.70 75.623 0.149 75.66 1.26 77 40 0.210

Z6 1.6 16.8 2181 0.45 1072.2 0.144 0.011800 0.078 0.07621 1.20 0.04686 1.29 75.621 0.060 74.58 0.93 41 31 0.039

75.666 ± 0.026 Ma; MSWD = 1.5

Note: Corr. coef., correlation coefficient. Ages calculated using the decay constants λ238 = 1.55125E-10 year−1 and λ235 = 9.8485E-10 year−1 (Jaffey et al. 1971).
∗All analyses are single zircon grains and pre-treated by the thermal annealing and acid leaching (CA-TIMS) technique. Data used in date calculation are in bold.
†Pb(c) is total common-Pb in analysis. Pb‡ is radiogenic Pb concentration. Total sample U content in pg.
§Th content is calculated from radiogenic 208Pb assuming concordance between U–Pb and Th–U systems.
||Measured ratio corrected for spike and fractionation only.
¶Radiogenic Pb ratio.
#Corrected for fractionation, spike, and blank. Also corrected for initial Th/U disequilibrium using radiogenic 208Pb and Th/U[magma] = 2.8.
Mass fractionation based on 202Pb/205Pb ratio of tracer (∼0.18% ± 0.04%/amu) was applied to single-collector Daly analyses.
All common Pb assumed to be laboratory blank. Total procedural blank less than 0.1 pg for U.
Blank isotopic composition: 206Pb/204Pb = 18.20 ± 0.45, 207Pb/204Pb = 15.29 ± 0.24, 208Pb/204Pb = 37.16 ± 0.77. MSWD, mean square weighted deviation.
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calculation of the legacy data or incorporation of systematic
uncertainties.

Methods
The bentonite U–Pb geochronology and the Bayesian age-

stratigraphic model employed here for the Dinosaur Park out-
crop section are reproduced from Ramezani et al. (2022) and
are also discussed in Beveridge et al. (2022). Also included
are the independently determined U–Pb zircon ages of the
BB from Eberth and Kamo (2020) and of the PT reported here
(Table 1) for assessing reproducibility. Those publications de-
scribe the details of CA-ID-TIMS analytical procedures, age
calculation methodology, and age-stratigraphic modelling.
Figure 3 illustrates the age model for the Dinosaur Park sec-
tion with its 95% confidence interval error envelope.

Six single zircon U–Pb analyses by the CA-ID-TIMS method
from the PT carried out at JSGL produced a weighted
mean 206Pb/238U date of 75.666 ± 0.026/0.033/0.087 Ma ( mean
square weighted deviation (MSWD) = 1.5) without any out-
liers ( Table 1, Fig. 3), using chiefly the same analytical pro-
cedures as those described in Eberth and Kamo (2020). The
only exceptions are the natural U isotopic composition of
137.818 ± 0.044 (Hiess et al. 2012) and an initial magma Th/U
ratio of 2.8 ± 1.0 used for data reduction here for the sake of
consistency with those of Ramezani et al. (2022). Because both
MIT and JSGL use the same EARTHTIME mixed U–Pb tracer so-
lution for ID-TIMS analysis, their systematic age uncertainties
can be ignored in comparing their results.

The DPP age-stratigraphic model of Ramezani et al. (2022)
used five U–Pb tuff ages combined with their precise strati-
graphic positions and the Bayesian statistics of the Bchron
software (Haslett and Parnell 2008; Parnell et al. 2008) to
extrapolate stratigraphic ages with objective (asymmetrical)
uncertainties without the assumption of constant rock ac-
cumulation rates. All lithostratigraphic and biozonal bound-
ary ages and error presented here are extrapolated from the
above model (Fig. 3).

Reproducibility of CA-ID-TIMS U–Pb ages
Eberth and Kamo (2020) reported an age of

74.308 ± 0.031 Ma for the BB in their study of the chronos-
tratigraphy of the dinosaur-rich Campanian–Maastrichtian
age HCFm of south-central Alberta. As indicated by Ramezani
et al. (2022), the weighted mean 206Pb/238U dates for the BB
reported by the two laboratories (Fig. 3) fall within the re-
ported 2σ ranges of their analytical uncertainties, with the
age reported by Eberth and Kamo (2020) being 0.26� older.
Ramezani et al. (2022) also pointed out that this difference
could be reduced to 0.16� by using similar data reduction
values corresponding to the natural U isotopic composition
and the initial magma Th/U ratio. The new U–Pb zircon age
for the PT (75.666 ± 0.026 Ma) is 0.36� older than the age
of 75.639 ± 0.025 Ma for the PT reported by Ramezani et al.
(2022), still well within the reported 2σ uncertainties of the
weighted mean age (Fig. 3).

The strong overlap of the weighted mean ages for the
BB and PT from different laboratories underscores the ac-

curacy and reproducibility of the modern U–Pb CA-ID-TIMS
geochronological method. In turn, reproducibility indicates
that U–Pb ages can be compiled over time to build a larger
age data set for the Park’s strata and fossils and to provide in-
creasingly finer chronostratigraphic resolution for BRG and
correlative stratigraphic sections at the Park and elsewhere.
In the following sections, we use the results of Ramezani et
al. (2022) to calibrate rock accumulation rates and biostrati-
graphic zonations at DPP.

Rock accumulation rates
The 88.75 m stratigraphic section that extends from the

FSB (5.5 m below the OFm–DPFm contact) to the BB (4.5 m
above the DPFm–BFm contact) encompasses ∼2.43 Myr,
with an overall rock accumulation rate of 3.65 ± 0.04 cm/ka
(Table 2). However, with five U–Pb ages available to us that en-
compass almost the complete exposed section at the Park, we
can calculate and compare average rock accumulation rates
for different intervals in the section, including the uppermost
OFm and lower, middle, and upper portions of the DPFm
(Table 2; Fig. 3). In ascending order, these are 1.91 ± 0.32,
4.90 ± 0.43, 4.11 ± 0.21, and 2.99 ± 0.10 cm/ka, respectively.
Each is indicated by a separate segment/slope along the age-
stratigraphy line and is reported with 2σ error from the
Bayesian age model (Table 2).

Two aspects of the age-stratigraphy line are of interest.
First, there is a strong inflection that highlights both an un-
usually low rock accumulation rate (1.91 ± 0.32 cm/ka) in the
uppermost portion of the OFm and an overall increased rock
accumulation rate for the entire DPFm. Secondly, the line
shows a steady decrease in rock accumulation rates upward
through the DPFm. We discuss these patterns and their sig-
nificance below.

The low rock accumulation rate in the
uppermost OFm

A rate of 1.91 ± 0.32 cm/ka for the uppermost OFm is un-
usually low for alluvial units in the distal foredeep of the Al-
berta Basin (cf., Lerbekmo 1989; Eberth and Hamblin 1993;
Lerbekmo 2005; Eberth and Braman 2012; Eberth and Kamo
2020). Where present, such values are typical of intervals
where unconformities and/or hiatus(es) are present (e.g., the
Whitemud-Battle-Scollard succession; Russell 1983; Eberth
and Braman 2012; Eberth and Kamo 2019). Braman and Kop-
pelhus (2005; fig. 6.4) described a stratigraphically coincident
first occurrence of six nonmarine palynomorph taxa at the
“very top” of the OFm at DPP, about three meters or so below
the discontinuity but no lower than the FSB and not 10 m
below the discontinuity as illustrated in their fig. 6.4 (DRB,
personal communication, 2016). Subsequent study of this as-
semblage (Braman 2013, 2018, pp. 29–31) resulted in it being
amended to five taxa and being designated as the Cranwellia
rumseyensis–Translucentipolis plicatilis palynological biozone,
ranging from the uppermost OFm (∼FSB) to ∼42 m above the
base of the DPFm at DPP (Fig. 4). Although first occurrences
of the biozone’s defining taxa are stratigraphically coinci-
dent at or slightly above the FSB in the OFm, first appear-
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Table 2. Rock accumulation rates at Dinosaur Provincial Park.

Data Rates

Stratigraphic interval Sample Tuff name
Height

(m) T (Ma) ±(2σ) �T (ka) ± �h Min Max cm/ka ±
IL082717-1 Bearpaw 83.25 74.289 0.014

LCZ–Bearpaw 728 24 21.75 2.89 3.09 2.99 0.10

LCZ2 LCZ 61.5 75.017 0.020

Plateau–LCZ 622 32 25.50 3.90 4.32 4.11 0.21

CD082717-1 Plateau 36 75.639 0.025

JC–Plateau 715 62 34.75 4.47 5.32 4.90 0.43

JC082817-1 JC 1.25 76.354 0.057

Field Station–JC 364 60 6.75 1.59 2.22 1.91 0.32

FS082717-1 Field Station −5.5 76.718 0.020

Dinosaur Park Fm (JC–BB) 2065 59 82.00 3.86 4.09 3.97 0.11

Complete section (FSB–BB) 2429 24 88.75 3.62 3.69 3.65 0.04

Note: LCZ, Lethbridge Coal Zone; JC, Jackson Coulee; BB, Bearpaw Bentonite; FSB, Field Station Bentonite.

ances of these same taxa are staggered through a 10 m strati-
graphic interval in exposures of the OFm in the Milk River
canyon area of southeastern Alberta (Braman 2018). Addition-
ally, in that region, the biozone terminates approximately
40 m higher in the OFm and fails to reach into the DPFm,
the base of which occurs in a stratigraphically higher position
compared to DPP (Eberth and Hamblin 1993; Eberth in press).

This complex stratigraphic and paleogeographic distribu-
tion pattern of palynomorphs in the C. rumseyensis–T. plicatilis
palynological biozone from DPP to the Milk River area sug-
gests that the uppermost OFm section at DPP likely contains
a temporally condensed interval or hiatus relative to time-
equivalent strata in the Milk River area of southeastern Al-
berta and thus may help explain the unusually low rock ac-
cumulation rate in the uppermost OFm exposed at DPP. As-
suming that the rock accumulation rate for an uncondensed
section of the OFm at DPP would likely not exceed that of
the immediately overlying DPFm (4.90 ± 0.43 cm/ka), which
was deposited during an episode of increased sediment sup-
ply (Eberth and Hamblin 1993; Eberth in press) and increased
accommodation (Rogers et al. 2023), we estimate that the con-
densed section/hiatus between the FSB and the JCB cannot
represent more than ∼227 ka.

Increased rock accumulation rate in the DPFm
versus the OFm

The DPFm shows an overall rock accumulation rate of
3.97 ± 0.11 cm/ka (Table 2). This value is twice that observed
for the top of the OFm (1.91 ± 0.32 cm/ka) and conforms to
an interpretation of increased rock accumulation rate asso-
ciated with accommodation during the onset of the Bearpaw
transgression across the Judith River–Belly River wedge (e.g.,
Eberth 2005; Rogers et al. 2016, 2023). It also conforms to the
interpretation of Eberth and Hamblin (1993), who proposed
that regionalized cordilleran tectonics and unroofing of the
proximal foredeep resulted in a sharp increase in sediment
supply upward across the OFm–DPFm discontinuity and ex-
pansion of the Dinosaur Park clastic wedge to the southeast
during the Bearpaw transgression.

The difference in the amount of overall rock accumula-
tion rates between the DPFm at DPP (∼4.0 cm/ka) versus the
Coal Ridge Member in north-central Montana (∼8.7 cm/ka)——
the two units whose bases are interpreted as marking the
isochronous onset of the Bearpaw transgression at ∼76.3 Ma
across the Judith River–Belly River wedge (Rogers et al.
2023)——is likely due to their proximal–distal locations rela-
tive to the foredeep, with the Montana section occupying a
more distal position in the basin relative to DPP. These differ-
ent relative positions are confirmed by the significantly older
age of the base of the BFm in the Montana section (∼75.2 Ma)
versus the much younger age of the base of the BFm at DPP
(∼74.4 Ma) (Ramezani et al. 2022; Rogers et al. 2023).

Decreasing rock accumulation rates upward
through the DPFm

Upward through the DPFm (Table 2, Fig. 3), rock accumula-
tion rates decline from 4.90 ± 0.43 cm/ka in the lower 36 m of
the formation to 4.11 ± 0.21 cm/ka in the middle of the for-
mation and to 2.99 ± 0.10 cm/ka in the uppermost 17.25 m
of the formation (the Lethbridge Coal Zone) and lowermost
4.5 m of the BFm. During a steady rate of sediment supply,
a decline in rock accumulation rates is unexpected under
conditions of increasing accommodation and expansion of
marine settings that result from a eustatic rise in sea level
(documented for this time interval (Kauffman and Caldwell
1993; fig. 5 in Ramezani et al. 2022)). A reduction in rock ac-
cumulation rates at DPP during the Bearpaw transgression
can be explained, however, if one considers the evidence for
declining sediment supply rates in the DPFm during a time
of eustatic (global) sea-level rise. In its lower 30–40 m, the
DPFm is overwhelmingly dominated by paleochannel sand-
stones (sandstone/mudstone ratios > 1) and frequent occur-
rences of stacked paleochannel successions that are more
than 20 m in thickness (Eberth and Hamblin 1993; Hamblin
1997; Eberth 2005). This indicates that, initially, sediment
supply was higher than could be accommodated fully and
that paleochannel stacking and some degree of sediment
bypassing resulted in the preferred preservation of channel
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sandstones (and dinosaur fossils) in the stratigraphic pile (cf.,
Legarreta and Uliana 1998; Blum and Tornquist 2000). Up-
ward through the DPFm, however, a declining depositional
slope, declining rates of flow, and overall declining sediment
supply are suggested by a combination of features including
(1) the disappearance of extraformational cobbles in chan-
nel lag deposits, (2) declining grain sizes in coarse-grained fa-
cies, (3) the appearance and preservation of widespread coal
and carbonaceous shales in the upper 40 m of the section,
(4) decreasing dimensions of paleochannels, and (5) declin-
ing occurrences of fully preserved megaherbivore and large
theropod dinosaur skeletons (Wood 1989; Eberth and Ham-
blin 1993; Hamblin 1997; Eberth 2005; Eberth and Currie
2005). Accordingly, although eustatic (global) sea-level rise
continued during deposition of the DPFm, a reduction in
sediment supply rates——likely caused by changing upstream
tectonic influences on depositional slope and possibly cli-
matic conditions (Eberth and Hamblin 1993)——resulted in an
overall decline in rock accumulation rates after an initially
large pulse of sediment supply. Similarly complex patterns
in parts of the western Canada Foreland Basin are described
by Catuneanu and Sweet (1999), Eberth and Braman (2012),
Eberth and Kamo (2019), and Eberth (in press), highlighting
the relative influence of eustasy, climate, and tectonics on
stratigraphic evolution and architecture in foreland basins
and other nonmarine settings (cf., Shanley and McCabe 1998;
Blum and Tornquist 2000).

Calibrated palynostratigraphic biozones
Braman (2018) provided the first palynological biozona-

tion scheme for the Alberta Basin. It ranged in age from the
Santonian to lower Paleocene and referred to preliminary
40Ar/39Ar geochronologic data summarized in Eberth (2005)
to calibrate some of the zones. Here, we update those calibra-
tions as they relate to the Park using the data of Ramezani
et al. (2022). Braman (2018) recognized portions or all of
four palynological biozones at the Park (Fig. 4). These are
described and calibrated here in ascending stratigraphic or-
der. A small portion of the Fibulapollis scabratus–Siberiapollis
spp. biozone is present at the base of the exposed section
below the FSB. Based on its relationship to the FSB, we re-
gard it as older than 76.718 Ma but cannot assess its maxi-
mum age. The Cranwellia rumseyensis–Translucentipollis plicatilis
biozone overlies the latter, ranges in age from 76.718 ± 0.20
to 75.49 + 0.11/−0.26 Ma extending up into the middle of
the DPFm (between the PT and the marker shale), at an in-
ferred stratigraphic position of ∼42 m above the OFm–DPFm
contact. As discussed above, it provides evidence for a con-
densed section or hiatus at DPP relative to the temporally
equivalent but more complete section in the OFm of the
Milk River drainage area of southeastern Alberta (Braman
2018). The Accuratipollis configuratus–Mancicorpus tripodiformis
biozone extends up section from above the PT to just
below the BFm (Braman 2018) and ranges in age from
75.49 + 0.11/−0.26 to 74.50 + 0.29/−0.15 Ma. Lastly, the Pseu-
doaquilapollenites parallelus–Parviprojectus leucocephalus biozone
is partially preserved at DPP predominantly at the base of the

BFm but may extend up to the Dorothy Bentonite of the BFm
near Drumheller (Eberth and Kamo 2020). It thus ranges in
age from 74.50 + 0.29/−0.15 to ∼73.7 Ma.

Geochronological calibration of Braman’s palynological
biozones in Edmonton Group strata of south-central Alberta
have provided an additional means of correlating late Maas-
trichtian strata from the Hell Creek Formation of north-
eastern Montana to the Scollard Formation of southern Al-
berta (Eberth and Kamo 2019, 2020). We anticipate that
our geochronological calibration of the Park’s palynological
biozones may similarly assist with correlating southern Al-
berta’s Campanian-age strata into northern and southern re-
gions of western Alberta, farther north into Alaska (Prince
Creek Formation), and south through the Milk River re-
gion into Montana (Judith River and Two Medicine forma-
tions).

Calibrated ammonite biozones
The well-established ammonite biostratigraphy of the WIB,

along with an extensive data set of 40Ar/39Ar bentonite ages,
has been used to construct a North American standardized
Late Cretaceous time scale (Cobban et al. 2006; Ogg and
Hinnov 2012; Gale et al. 2020). These 40Ar/39Ar ages were
based on legacy multi-grain sanidine analyses at the USGS
lab (Obradovich 1993), with limited reproducibility by mod-
ern standards (see above). The CA-ID-TIMS U–Pb geochronol-
ogy and age-stratigraphy model employed here can be used to
test the existing calibration of the Campanian-age ammonite
biozones.

Tsujita (1995) proposed that the base of the BFm in
southern Alberta could be assigned consistently to the Ba-
culites compressus ammonite biozone. Specimens of B. com-
pressus collected from ∼10 m above the base of the BFm
at DPP (above the BB) broadly confirm this interpretation
(e.g., Royal Tyrrell Museum of Palaeontology specimens:
TMP1973.008.0406 and TMP1973.008.0447) and can be as-
signed an age of 74.19 + 0.10/−0.68 Ma by extrapolating
from our age model. Eberth et al. (1990) used palynolog-
ical evidence, marine biostratigraphic data from western
Saskatchewan, and radioisotopic data from Thomas et al.
(1990) to suggest that the OFm–DPFm contact at DPP occurs
within the Baculites scotti biozone (and that the B. compres-
sus biozone occurs at or near the top of the exposed sec-
tion). Again, extrapolating from our age-stratigraphy model
(Fig. 3), this latter interpretation suggests that the B. scotti bio-
zone should encompass the 76.47 + 0.14/−0.08 Ma age of the
OFm–DPFm contact. Our two extrapolated ages of 74.19 and
76.47 Ma for stratigraphic occurrences within the B. compres-
sus and B. scotti biozones, respectively, fall within Gale et al.’s
(2020) age ranges for these two biozones (74.2–73.9 Ma for
B. compressus and 76.9–76.3 Ma for B. scotti). Accordingly, we
tentatively accept the age ranges of the four-intervening am-
monite biozones reported in Ogg and Hinnov (2012) and up-
dated in Gale et al. (2020) (Fig. 4). In the geochronological con-
text of ammonite zonations, the exposed section at DPP spans
parts or all of six ammonite biozones, each with durations of
∼0.7–0.4 Myr (Fig. 4).
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Calibrated dinosaur assemblage zones
Dinosaurian megaherbivore species, specifically

hadrosaurs and ceratopsians, are stratigraphically parti-
tioned in the Belly River and Edmonton groups of southern
Alberta (Holmes et al. 2001; Currie and Russell 2005; Eberth
and Getty 2005; Ryan and Evans 2005; Ryan and Russell 2005;
Evans 2007; Evans and Reisz 2007; Evans et al. 2009; Eberth
et al. 2010; Mallon et al. 2012; Eberth et al. 2013a; Evans
et al. 2013, 2014; Eberth and Kamo 2020; Eberth in press).
These differential distributions were consistent enough to be
recognised by the early collectors (Sternberg 1950) and sub-
sequently allowed for the recognition of informal dinosaur
assemblage zones at DPP (e.g., Ryan and Evans 2005; Mallon
et al. 2012; Eberth et al. 2013a; Evans et al. 2014).

One of the most notable changes in dinosaur assem-
blages at the Park occurs across the OFm–DPFm contact. Al-
though the record of dinosaurs from the OFm at the Park
is limited, none of the three large-bodied species recov-
ered from the formation——the hadrosaurine Brachylophosaurus
canadensis, the centrosaurine Coronosaurus brinkmani, and the
tyrannosaurine Daspletosaurus torosus (but also see Carr et
al. 2017)——are known to occur in the overlying DPFm, an
interval that has been intensely sampled and studied for
more than 100 years (Currie 2005; Currie and Russell 2005).
Conversely, whereas chasmosaurine ceratopsids and lam-
beosaurine hadrosaurids are abundant in the DPFm, there is
no evidence for them in the underlying OFm at DPP or else-
where in southern Alberta. Furthermore, there is evidence
for at least three dinosaur assemblage zones in the DPFm
that can be defined by occurrences of 2–3 megaherbivore
taxa. The stratigraphic succession of four assemblage zones at
DPP may represent evolutionary changes within lineages of
hadrosaurids and ceratopsids and/or ecological replacement
of taxa in response to differential habitat preferences related
to proximity to shoreline and/or latitudinal climate gradients
(Sternberg 1950; Béland and Russell 1978; Brinkman 1990;
Baszio 1997a, 1997b; Brinkman et al. 1998; Holmes et al. 2001;
Currie and Russell 2005; Eberth and Getty 2005; Ryan and
Evans 2005; Ryan and Russell 2005; Evans 2007; Evans et al.
2009; Mallon et al. 2012; Evans et al. 2013, 2014; Brown et al.
2020; Lowi-Merri and Evans 2020; Eberth in press).

The dinosaur assemblage zones described here remain
informal and are based on a combination of first- and
last-known stratigraphic occurrences for some of the well-
represented megaherbivores known from DPP (typically rep-
resented by 10 or more specimens; see Supplementary data
in Currie and Koppelhus 2005), as well as occurrences of
poorly represented megaherbivore taxa within those ranges
or within limited lithostratigraphic intervals at the top or
bottom of the exposed section (e.g., OFm and Lethbridge Coal
Zone). The reader is directed specifically to Supplementary
sections in Currie and Koppelhus (2005) and Mallon et al.
(2012) for access to specimen data sets with which to assess
the numbers of individuals for each taxon and thus the ro-
bustness of taxonomic data sets.

Because some of the Park’s megaherbivore taxa are rec-
ognized elsewhere in Alberta and Montana, they suggest
an emerging potential for the Park’s dinosaur assemblage

zones to be elevated to formal biozones and biochrons in the
northern portion of the WIB (e.g., Fowler 2017). However,
such an undertaking requires larger sample sizes for some
of the taxa, detailed documentation of their occurrences,
and verification of their chronostratigraphic equivalency
by independent radioisotope geochronology at locations
beyond the limits of DPP. That said, we remain optimistic
that ongoing paleontological and geological work being
conducted in western Saskatchewan, along the Milk River
drainage of southern Alberta, across northern and central
Montana will eventually allow for such formalization. Below,
we describe and calibrate the four informal dinosaurian
assemblage zones at DPP (Fig. 4). We also review occurrences
of some of the taxa in locations beyond DPP as a step toward
establishing dinosaur biozones and biochrons in the future.

Brachylophosaurus–Coronosaurus assemblage zone
(76.47 − 76.80+ Ma)

Although we can reliably place the upper boundary of this
zone at the OFm–DPFm contact (76.470 + 0.14/−0.084 Ma;
Fig. 3), there are no data currently available with which to
confidently assign a lower age boundary for the assemblage;
age projections at 10 or more meters below the contact and
beyond the lowest dated bentonite (FSB) become associated
with such large model-age errors that analysis is pointless
(e.g., 76.803 + 0.58/−0.089 Ma; Table 3, Fig. 3). That said, we
anticipate that new chronostratigraphic data from the Milk
River canyon region of southeastern Alberta (Federico Fanti,
personal communication, 2023) should be able to clarify the
age range of this assemblage zone.

Exposures of the OFm at DPP yield the hadrosaurine Brachy-
lophosaurus canadensis and the centrosaurine Coronosaurus
brinkmani, two genera that are notably absent from the
overlying, fossil-rich DPFm. The genus Brachylophosaurus is
represented at DPP by two specimens, including the holo-
type, which was collected 7.5 m below the OFm–DPFm con-
tact (Cuthbertson and Holmes 2010). The taxon is well rep-
resented regionally, including farther south in the Milk
River, Judith River, and Malta areas of Alberta and Montana
(Weishampel et al. 2004; Prieto-Marquez 2005, 2007; Tweet
et al. 2008; Cuthbertson and Holmes 2010; Freedman-Fowler
and Horner 2015).

The centrosaurine genus Coronosaurus (Ryan et al. 2012)
is known from two and possibly a third monodominant
bonebed assemblage that occurs more than 10 m below the
OFm–DPFm discontinuity at DPP. The taxon is also known
from a bonebed in the OFm along the Milk River Ridge in
southern Alberta, which has been suggested to be penecon-
temporaneous with its range at DPP (Ryan and Russell 2005).

The ankylosaurid Scolosaurus cutleri (Penkalski and Blows
2013) may be characteristic for this level as well (Arbour and
Currie 2013). Sternberg (1950) placed a quarry stake (Q080)
in the lower part of the DPF, but other evidence suggests the
quarry was in the OFm (Arbour and Currie 2013). Numerous
specimens of this taxon have been recovered from the Two
Medicine Formation of Montana (Arbour and Currie 2013),
although there is some dispute as to whether or not the Mon-
tana specimens represent a different taxon (Penkalski 2013).
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Table 3. Extrapolated ages of litho- and biostratigraphic picks from Bayesian age model at Dinosaur
Provincial Park.

Above/below OFm–
DPFm contact (m)

Measured/inferred
age (Ma)

2σ error (Myr)

Picks + –

Baculites compressus specimens 88.75 74.19 0.10 0.68

BB∗ 83.25 74.289 0.014 0.014

DPFm–BFm boundary 78.75 74.44 0.30 0.11

Accuratipollis–Parviprojectus boundary ∼77 74.50 0.29 0.15

LCZB∗ 61.50 75.017 0.020 0.020

Base of LCZ 58.25 75.098 0.25 0.063

Shale marker 47.75 75.35 0.19 0.22

Cranwellia–Accuratipollis boundary ∼42 75.49 0.11 0.26

PT∗ 36.00 75.639 0.025 0.025

Corythosaurus–Styracosaurus boundary ∼30 75.77 0.29 0.10

JCB∗ 1.25 76.354 0.057 0.057

OFm–DPFm 0.00 76.470 0.14 0.084

FSB∗ −5.50 76.718 0.020 0.020

Base of measured section −10.00 76.803 0.58 0.089

∗Measured U–Pb age of bentonite bed. Data from Ramezani et al. (2022). OFm, Oldman Formation; DPFm, Dinosaur Park Formation; BB,
Bearpaw Bentonite; BFm, Bearpaw Formation; LCZB, Lethbridge Coal Zone Bentonite; PT, Plateau Tuff; JCB, Jackson Coulee Bentonite;
FSB, Field Station Bentonite.

The tyrannosaurid Daspletosaurus torosus, also known from
the upper part of this zone, is absent from the overlying
DPFm at DPP, although the genus persists with what appears
to be a distinct species (Currie 2003). Another specimen of
D. torosus is known from the lower part of the DPFm along
the Milk River, but the OFm–DPFm contact is time trans-
gressive (Eberth and Hamblin 1993) and the site likely repre-
sents an equivalent time to the DPP specimen (Federico Fanti,
personal communication, 2023; cf., Chiba et al. 2015). The
genus has broad geographical range (Alberta and Montana)
and might also have a broad chronostratigraphic range based
on its occurrence in the Oldman, Dinosaur Park, Judith River,
and Two Medicine formations (Currie 2005; Carr et al. 2017;
Warshaw and Fowler 2022). For now, the species-level taxon-
omy of Daspletosaurus is in flux and unsuitable as an index
taxon.

Corythosaurus–Centrosaurus assemblage zone
(76.47–75.77 Ma)

This assemblage zone ranges in age from
76.470 + 0.14/−0.084 Ma at the OFm–DPFm contact to
75.77 + 0.29/−0.10 Ma at the top of the zone placed at
∼30 m above the contact (Ryan and Evans 2005; Table 3,
Fig. 3). It has a duration of approximately 700 ka. The lower
30 m of the DPFm is characterized by the presence of
the lambeosaurines Corythosaurus (consisting of two strati-
graphically successive species, Corythosaurus casuarius and
Corythosaurus intermedius) and Parasaurolophus walker (Evans et
al. 2009), the hadrosaurine Gryposaurus notabilis (Lowi-Merri
and Evans 2020), and the centrosaurine Centrosaurus apertus.
The upper one-half of this assemblage zone also hosts the
lambeosaurine Lambeosaurus, which continues up-section
into the middle of the next zone.

Regarding Corythosaurus, a sub-adult of C. casuarius occurs in
the lower DPFm ∼100 km east of DPP near Hilda (Evans 2007),
and two specimens of Corythosaurus have been documented
in the Coal Ridge Member of the Judith River Formation in
Montana at Havre and Winifred (Takasaki et al. 2023). These
finds suggest widespread distribution of the genus just above
the Judith River–Belly River discontinuity and equivalent in
age to the base of the DPFm at DPP (76.3 Ma; Rogers et al.
2023).

Of particular interest is the ceratopsid Centrosaurus apertus,
for which two distinct taphonomic modes occur: multiple
(∼20) football-field-sized monodominant bonebeds and mul-
tiple (∼20) isolated skulls/skeletons (Eberth and Getty 2005;
Ryan and Evans 2005; Eberth et al. 2010; Brown 2013a; Brown
et al. 2020). The taxon is also present in the Oldman and Di-
nosaur Park formations throughout southern Alberta. Eberth
et al. (2010) documented bonebed occurences of C. apertus in
the lower DPFm east of DPP along the South Saskatchewan
River that correlate with those in the Park. Chiba et al. (2015)
described both bonebed and isolated skull material of this
species above the Comrey Sandstone Member (Troke 1993)
of the OFm near Onefour (southeast Alberta). Whereas a di-
achronous contact between the Oldman and Dinosaur Park
formations may explain occurrences of the taxon in differ-
ent formations at about the same time (Chiba et al. 2015;
its occurrence ∼160 km south of DPP suggests that the taxon
was not sensitive to paleoenvironmental differences that may
have existed between this area and DPP (Eberth and Hamblin
1993; Cullen and Evans 2016). Given the existing broad geo-
graphical distribution of the taxon across southern Alberta,
paleothermometric data (Cullen and Evans 2016) that suggest
long-distance migrations for this taxon, as well as its abun-
dant occurrence in a variety of taphonomic modes, we hy-
pothesize that C. apertus will eventually be discovered farther
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south in the Coal Ridge Member of the Judith River Formation
of Montana, which lies chronostratigraphically above the Ju-
dith River–Belly River discontinuity and is thus equivalent in
time to the DPFm at DPP (Rogers et al. 2023). If present there,
it should be considered as a chronostratigraphic index taxon
across a broad area of northern Laramidia.

Although previous work suggested that Chasmosaurus rus-
selli and Chasmosaurus belli are stratigraphically separate
(Godfrey and Holmes 1995; Ryan and Evans 2005; and Mallon
et al. 2012), more recent work has resulted in both a less re-
solved specimen level taxonomy and locality data suggesting
that the holotype of C. russelli (recovered from the Manyber-
ries area of southeastern Alberta) equates to a position in
the upper portion of the DPFm (Campbell et al. 2016, 2019;
Fowler and Freedman-Fowler 2020). Accordingly, these obser-
vations reduce the current understanding of the stratigraphic
occurrence of these taxa and their utility in defining assem-
blage zones or biochrons.

The assemblage zone also hosts abundant ankylosaur re-
mains, though faunal changes in ankylosaur taxa within
the DPFm are complex (Arbour and Currie 2013). The strati-
graphic level of the holotype of Euoplocephalus tutus was not
well described. Possible rediscovery of the site (Tanke, per-
sonal communication, 2022) in the lower part of the DPFm is
currently being investigated. Lambe (1902) named the taxon
Stereocephalus tutus, but the name was preoccupied and was re-
named by Lambe (1910) as Euoplocephalus tutus. The majority
of specimens (∼7) of this taxon are from the Corythosaurus–
Centrosaurus assemblage zone, and only one specimen has
been recovered from the lower part of the next younger
assemblage zone (Arbour and Currie 2013). A second anky-
losaurid species——Dyoplosaurus acutosquameus——is also known
from the Corythosaurus–Centrosaurus assemblage zone on the
basis of two specimens (Arbour and Currie 2013).

Prosaurolophus maximus–Styracosaurus albertensis
assemblage zone (75.77–75.10 Ma)

This assemblage zone occurs within the middle one-third
of the DPFm, 30–58 m above the base of the formation. Fol-
lowing Ryan and Evans (2005), we recognize the top of this
assemblage zone as occurring “…at or near the Lethbridge
Coal Zone…” and for stratigraphic convenience place the top
of the zone at the base of the Lethbridge Coal Zone (58.25 m in
the Iddesleigh section; Fig. 2), where the first prominent sub-
bituminous coal occurs. The base of this zone is coincident
in age with the top of the Corythosaurus–Centrosaurus apertus
zone described above (75.77 + 0.29/−0.10 Ma). The age model
extrapolates an age of 75.098 + 0.25/−0.063 Ma for the base
of the Lethbridge Coal Zone and thus the top of this assem-
blage zone (Table 3; Fig. 3). The zone has a duration of approx-
imately 672 ka.

The zone is characterized by the unique combination of the
large hadrosaurine Prosaurolophus maximus, the centrosaurine
Styracosaurus albertensis, and the chasmosaurine Chasmosaurus
belli. In addition, some specimens of the lambeosaurine, Lam-
beosaurus lambei, are found in the lowest 20 m of this zone,
thus straddling the boundary between this and the underly-
ing assemblage zone. Finally, one specimen of the ankylosaur

Anodontosaurus lambei, which is better known from the HCFm,
has been recovered from this assemblage zone (Arbour and
Currie 2013).

At least eight specimens assigned to Prosaurolophus max-
imus occur in the “upper” DPFm at the Park (Currie and
Russell 2005), and although the taxon is not represented in
the lowest 30 m of the DPFm——thus providing its biostrati-
graphic value——it is known to occur within the Lethbridge
Coal Zone. Elsewhere in southern Alberta and Montana, the
taxon ranges up-section well into the BFm (estimated age of
∼74 Ma; McGarrity et al. 2013; Drysdale et al. 2018; see dis-
cussion below). As with Centrosaurus apertus, Styracosaurus al-
bertensis is characterized by both monodominant bonebeds
(n =∼3) and multiple isolated skulls/skeletons (n =∼10), al-
though in lower abundance (Brown 2013; Brown et al. 2020).
While all currently recognized specimens of Chasmosaurus
belli at DPP occur in this zone, taxonomic uncertainty has re-
duced the sample of clearly diagnostic specimens (Campbell
et al. 2016, 2019; Fowler and Freedman-Fowler 2020; Holmes
et al. 2020; see above).

Evans et al. (2014) documented the close association of the
hadrosaurine P. maximus and the centrosaurine S. albertensis
in the DPFm near Onefour, Alberta. In that area, U–Pb age
data (Federico Fanti, personal communication, 2023) show
that the base of the DPFm is younger than at DPP and in-
dicate that the Onefour specimens fall within the age range
proposed here for the dinosaur assemblage zone. Biostrati-
graphic evidence from the BFm indicates that P. maximus was
coeval with Baculites compressus, lived during magnetochrons
33n.3n–33n.2n, and was broadly contemporaneous with spec-
imens now referred to the taxon from the Two Medicine
Formation of northwestern Montana (McGarrity et al. 2013;
Drysdale et al. 2018). Because these occurrences show that
P. maximus ranges through the overlying dinosaur assem-
blage zone (Lambeosaurus magnicristus–Chasmosaurus irvinenen-
sis), it is likely of more limited biostratigraphic value than
S. albertensis.

Lambeosaurus
magnicristatus–pachyrhinosaur–Chasmosaurus
irvinensis assemblage zone (75.10–74.44 Ma)

The base of this zone is coincident in age with the top
of the Prosaurolophus maximus–Styracosaurus albertensis assem-
blage zone described above (75.098 + 0.25/−0.063 Ma). For
stratigraphic convenience, the top of this zone is placed at the
DPFm–BFm (nonmarine–marine) contact, with an inferred
age of 74.44 + 0.30/−0.11 Ma (Table 3, Fig. 3). Thus, the zone
has a minimum duration of approximately 658 ka. In the
uppermost 21 m of the DPFm (Lethbridge Coal Zone; 58–
79 m), most of the well-known megaherbivore taxa drop out
and are replaced by rare taxa that are unknown elsewhere
in the formation. These include the type specimen of the
lambeosaurine Lambeosaurus magnicristatus, a pachyrhinosaur-
like centrosaurine that resembles Achelosaurus (Ryan et al.
2010), and two specimens of the chasmosaurine Chasmosaurus
(=Vagaceratops) irvinensis. P. maximus also persists into this in-
terval, although in greatly reduced numbers (Drysdale et al.
2018; see above).
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A referred specimen of L. magnicristatus was collected from
near the base of the DPFm southeast of Manyberries, Alberta.
As discussed above, this places this specimen at the same
stratigraphic level as Styracosaurus and P. maximus in that area
and suggests some degree of stratigraphic overlap between
L. magnicristatus on the one hand and Styracosaurus and P.
maximus on the other. Chasmosaurus irvinensis specimens have
been found in exposures of the Lethbridge Coal Zone (DPFm)
throughout southeastern Alberta. The holotype is from a lo-
cality near Medicine Hat, and two other specimens were col-
lected near Onefour in southeastern Alberta (Campbell et al.
2019).

A comparison with dinosaur assemblage zones
in the overlying Horseshoe Canyon Formation

The Campanian–Maastrichtian age HCFm of south-central
Alberta has an age range of ∼5.1 Ma and encompasses three
megaherbivore dinosaur assemblage zones (Eberth et al.
2013a; Eberth and Kamo 2020). In ascending stratigraphic
order these are (1) the Edmontosaurus regalis–Pachyrhinosaurus
canadensis zone, 73.1–71.5 Ma (duration ∼1.6 Myr), (2) the Hy-
pacrosaurus altispinus–Saurolophus osborni zone, 71.5–69.6 Ma
(duration 1.9 Myr), and (3) the Eotriceratops xerinsularis zone,
69.6–68.2 Ma (duration 1.4 Myr). In addition to the HCFm di-
nosaur assemblage zones exhibiting durations that are 2–3
times longer than those documented at DPP, their taxonomic
compositions are less diverse (cf., Eberth et al. 2013a).

These data suggest that dinosaur assemblage-zone
turnover rates decreased sharply from 74.4 to 73.1 Ma
(latest Campanian) in western Canada and remained low (or
decreased further) until the end-Cretaceous extinction event.
This decrease in turnover rate is not merely due to patterns
of overlapping occurrences within assemblages but is also
seen independently in the duration of well-sampled, closely
related individual taxa between the DPFm and HCFm:

1) C. apertus (∼0.6 Ma) and S. albertensis (∼0.5 Ma) versus P.
canadensis (∼0.9 Ma);

2) G. notabilis (∼0.3 Ma) and P. maximus (∼0.5 Ma) versus E. re-
galis (∼0.7 Ma) and S. osborni (∼1.3 Ma); and

3) C. casuarius (∼0.3 Ma), C. intermedius (∼0.3 Ma), and L. lambei
(∼0.5 Ma) versus H. altispinus (∼1.9 Ma).

Potential sampling biases notwithstanding, peak dinosaur
diversity was achieved during the middle-to-late Campanian
(Ramezani et al. 2022), the time interval recorded in the
stratigraphic section at DPP. Thus, the recognition of peak
dinosaur diversity is likely related in part to the relatively
fast turnover rates that characterize taxa and assemblages at
that time. Although the causes for declining megaherbivore-
dinosaur turnover rates and assemblage diversity in western
Canada during the Maastrichtian remain beyond the scope
of this study, it is compelling to consider that the decline in
turnover rates had begun by 73.1 Ma, shortly after the WIS
had begun its final retreat from North America (Kauffman
and Caldwell 1993). Accordingly, a decline in dinosaur assem-
blage turnover rates may have been a response to a decrease
in environmental partitioning and the expansion of ecologi-

cally homogenous/stable nonmarine environments into the
vast areas once occupied by the WIS, as suggested by the
works of Horner et al. (1992), Brinkman et al. (1998), Gates
et al. (2012), and Loewen et al. (2013).

Finally, it should be noted that for both the BRG and the Ed-
monton Group, the established assemblage zones are based
on the occurrence of megaherbivores, specifically Ceratopsi-
dae and Hadrosauridae. Similar zones either do not exist or
have not yet been established for other large-bodied ornithis-
chians (Ankylosauridae and Nodosauridae), for small-bodied
ornithischians (e.g., Leptoceratopsidae, Pachycephalosauri-
dae, and Thescelosauridae), for Tyrannosauridae, or for the
several lineages of smaller theropods (e.g., Caenagnathi-
dae, Dromaeosauridae, Ornithomimidae, and Troodontidae)
(Eberth et al. 2013a; Funston 2020; Cullen et al. 2021). For
some taxa, such as small-bodied ornithischians and small
theropods, this pattern is likely largely driven by poor sam-
pling (Brown et al. 2013a, 2013b; Evans et al. 2013). How-
ever, several theropod lineages are well sampled and show
broad stratigraphic overlap of closely related species and/or
widespread stratigraphic occurrences within the formation
(Cullen et al. 2021). This may also represent a true distinction
in species duration/replacement rates between ornithischian
megaherbivores and contemporaneous theropod dinosaurs,
suggesting distinct evolutionary rates, differing ecological
sensitivities, contrasting levels of ecological partitioning, or
a combination of several factors.

Summary and conclusions
Reproducible, high-precision radioisotopic ages have been

difficult to obtain from DPP during the past 30 years.
This problem is now being resolved with newly reported
CA-ID-TIMS U–Pb geochronology of zircons from ben-
tonite deposits distributed through the Park’s exposed
bedrock section. Five weighted mean U–Pb ages range from
76.718 ± 0.020 to 74.289 ± 0.014 Ma, indicating a duration
of ∼2.429 ± 0.024 Myr for the exposed bedrock section. The
reproducibility of these ages (within 2σ analytical error)
has been demonstrated by independent CA-ID-TIMS U–Pb
analyses of two of these bentonites (BB and PT) at dif-
ferent laboratories. These ages and the age-stratigraphic
model that they support are the basis for geochronolog-
ical calibration of the Park’s rocks and fossils, as well
as calibrations of biozones of microfossils, invertebrates,
and vertebrates that have been developed at the Park and
elsewhere. As additional radioisotopically calibrated strati-
graphic sections from the BRG become available, we antic-
ipate important advances in our understanding of the tec-
tonic, basin evolution, and paleontological history of the re-
gion.

With respect to interpretations of the BRG’s stratigraphic
evolution in southern Alberta, our data reveal a sharp in-
crease in rock accumulation rates at the base of the DPFm.
This pattern broadly conforms to the widely accepted in-
terpretation that the onset of transgression of the Bearpaw
Sea was associated with increased accommodation result-
ing from a eustatic rise in sea level and an allogenic tec-
tonic event in WIB. However, a very low rate of rock ac-
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cumulation in the upper OFm exposed at DPP and a long-
term and gradual decline in rock accumulation rates up-
ward through the DPFm appear to reflect regionalized vari-
ations in tectonic activity, basin response, and sediment
supply. By combining other radioisotopically calibrated and
correlation of upper Campanian sections from other por-
tions of the basin with our data (e.g., Wapiti Formation
from west-central Alberta, OFm from southeastern and
southwestern Alberta, Belly River Formation from west-
ern Saskatchewan, and Judith River Formation from north-
central Montana), such interpretations can be tested and
may provide clarity concerning the relative influences of
changing sea-level, climate, and regionalized tectonics on
basin architecture across the vast Judith River–Belly River
wedge.

The resulting calibrations also reveal patterns of inter-
est concerning the taxonomic composition and durations of
some of the Park’s biozones. For example, the newly cali-
brated dinosaur assemblage zones provide a basis for com-
parisons with data emerging from the Milk River drainage
area at and south of the Canada–USA border. The unique
taxonomic richness of the Park’s dinosaur assemblage and
the durations of its dinosaur assemblage zones can also be
considered in a global geochronological context and com-
pared closely with emerging data sets of finely calibrated
dinosaur diversity patterns from other locations (e.g., Mon-
tana, New Mexico, and Utah). High-resolution chronostrati-
graphic frameworks from the Upper Cretaceous of North
America can be combined now to refine patterns and
frame questions concerning dinosaurian paleobiogeography,
provincialism, migrations, and patterns of evolution and ex-
tinction in North America and Euro-Asia. Lastly, chronos-
tratigraphic calibration of the Park’s dinosaur assemblage
zones confirms that during the last eight million years of
the Cretaceous, megaherbivore turnover rates decreased no-
tably, a pattern that may have been influenced by the fi-
nal withdrawal of the WIS from North America and the
establishment of vast areas of lowland terrestrial ecosys-
tems.
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